Nanobiotecnología en las plantas. Estado del arte
Contenido principal del artículo
Resumen
La aplicación de la nanotecnología en el sector agroalimentario es uno de los campos de más rápido crecimiento en la nano-investigación. Innovar y generar tecnología para producir la cantidad y la calidad de alimentos suficientes para alimentar a una población mundial en rápido crecimiento de los tiempos modernos, siempre será el mayor desafío. Con la Nanotecnología se abre un amplio abanico de oportunidades en la biotecnología de las plantas. Se muestran sus efectos en la desinfección de las superficies de los explantes, formación de callos, organogénesis, crecimiento de brotes in vitro, enraizamiento, producción de metabolitos, variación somaclonal, transformación genética, cultivo de células. Se espera que esta revisión crítica pueda proporcionar la información básica sobre los antecedentes en la investigación nanobiotecnológica, que permita avanzar con la experimentación en las aplicaciones de las nanopartículas en este campo.
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Citas
Alharby, H., Metwali, E., Fuller, M., Aldhebiani, A. (2016). Impact of Application of Zinc Oxide Nanoparticles on Callus Induction, Plant Regeneration, Element Content and Antioxidant Enzyme Activity in tomato (Solanum lycopersicum Mill.) under Salt Stress. Arch. Biol. Sci., 68; 723–735. DOI: http://dx.doi.org/10.2298/ABS151105017A.
Anwaar, S., Maqbool, Q., Jabeen, N., Nazar, M., Abbas, F., Nawaz, B., Hussain, T., Hussain, S. Z.(2016). The Effect of Green Synthesized CuO Nanoparticles on Callogenesis and Regeneration of Oryza sativa L. Front. Plant Sci. 7; 1-9.
Ardekani, M.R.S., Abdin, M.MZ., Nazima, A.Z., Nasrulla N.N., Samim, M., Samim, M. (2014). Calcium phosphate nanoparticles a novel nano-viral gene delivery system for genetic transformation of tobacco. International Journal of Pharmacy and Pharmaceutical Sciences, 6(6); 605-609.
Asharani, P.V., Mun, G.L.K., Hande, M.P., Valiyaveettil, S. (2009). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano., 3; 279-290. DOI: https://doi.org/ 10.1021/nn800596w
Ávalos, A., Haza, AI, Mateo, D., Y Morales, P. (2013). Nanopartículas de plata: aplicaciones y riesgos tóxicos para la salud humana y el medio ambiente. Revista Complutense De Ciencias Veterinarias, 7(2); 1-23.
Bansod, S., Bawskar, M., Rai. M. (2015). In vitro effect of biogenic silver nanoparticles on sterilisation of tobacco leaf explants and for higher yield of protoplasts. IET Nanobiotechnology,12; 1–7.
Bello-Bello, J., Chavez-Santos, R A., Lecona-Guzmán, C A., Bogdanchikova, N., Salinas-Ruíz, J., Gómez-Merino, F., Pestryakov, A. (2017). Hormetic response by silver nanoparticles on in vitro multiplication of sugarcane (Saccharum spp. cv. Mex 69-290) using a Temporary Immersion System. Dose-Response, 15(4); 1-9. DOI:http://dx.doi.org/10.1177/1559325817744945
Bhat, P. y Bhat, A. (2016). Silver nanoparticles for the enhancement of accumulation of capsaicin in suspension culture of Capsicum sp. Journal of Experimental Sciences, 7(2); 1-6.
Cabrera, P. e Iván, C. (2018). Estudio del efecto hormético y antimicrobiano de nanoplata en la regeneración in vitro en mora de castilla (Rubus glaucus). Universidad de Las Fuerzas Armadas. Quito, Ecuador, pp.56.
Carlson, C., Hussain, S.M., Schrand, A.M., Braydich-Stolle, L.K., Hess, K.L., Jones, R.L., Schlager, J.J. (2008). Unique cellular interaction of silver nanoparticles: size dependent generation of reactive oxygen species. J Phys Chem B., 112; 13608-13619. DOI: https://doi.org/10.1021/jp712087m.
Chamani E, Ghalehtaki, K.S., Mohebodini, M., Ghanbari, A. (2015). The effect of Zinc oxide nano particles and Humic acid on morphological characters and secondary metabolite production in Lilium ledebourii Bioss. Iran J Genet Plant Breed., 4(2); 11–19.
Chithrani, B.D., Ghazani, A.A., Chan, W.C.W.(2006). Determining the size and shape dependence of gold nanoparticle uptake by mammalian cells. Nano Lett., 7; 1542–1550.
Choi, O. y Hu, Z. (2008). Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol. 42; 4583-4588.
De Jong, W.H., Hagens, W.I., Krystek, P., Burger, M.C., Sips. A.JA.M., Geertsma, R.E. (2008). Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials, 29; 1912-1919. DOI:https://doi.org/ 10.1016/j.biomaterials.2007.12.037.
Desai, Ch.V., Heta, B., Desai, K.P., Suthar, D., Singh, R.M., Patel A., Taslim, A. (2015). Phytotoxicity of zinc-nanoparticles and its influence on stevioside production in Stevia rebaudiana Bertoni. Applied Biological Research, 17 (1); 1-7.
El Badawy, A,M., Silva, R.G., Morris, B., Scheckel, K.G., Suidan, M.T., Tolaymat, T.M.(2011). Surface Charge-Dependent Toxicity of Silver Nanoparticles. Environmental Science and Technology, 45(1); 283-287.
Ewais, E.A., Said, A. Desouky, E., Elshazly, H. (2015). Evaluation of Callus Responses of Solanum nigrum L. Exposed to Biologically Synthesized Silver Nanoparticles Nanoscience and Nanotechnology, 5(3); 45-56.
Fayez, K. A., El-Deeb, B. A., Mostafa, N. Y. (2017). Toxicity of biosynthetic silver nanoparticles on the growth, cell ultrastructure and physiological activities of barley plant. Acta Physiologiae Plantarum, 39(7); 12-18. DOI:http://dx.doi.org/10.1007/S11738-017-2452-3
Fazal, H., Abbasi, B.H., Ahmad,N., Ali, M. (2016). Elicitation of medicinally important antioxidant secondary metabolites with Silver and Gold nanoparticles in callus cultures of Prunella vulgaris L. Appl Biochem Biotechnol.,180(6);1076-1092. DOI: http://dx.doi.org/ 10.1007/s12010-016-2153-1.
Gálvez, V. y Tanarro, C. (2010). Toxicología de las nanopartículas. Seguridad y salud en el trabajo., 56; 6-12.
Genady, E.A., Ebtesam, A.Q. y Fahmy, A.H.(2016). Copper Sulfate Nanoparticales In vitro Applications on Verbena bipinnatifida Nutt. Stimulating Growth and Total Phenolic Content Increasments. Int.J. Pharm. Res. Allied Sci., 5(1); 196-202.
Ghorbanpour, M. y Hadian, J. (2015). Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro. Carbon, 94; 749-759.
Gruyer, N., Dorais, M., Bastien, C., Dassylva, N., Triffault-Bouchet, G. (2014). Interaction between silver nanoparticles and plant growth. Acta Horticulturae, 1037; 795-800. DOI: http://dx.doi.org/10.17660/Actahortic.2014.1037.105
Hashim, K. M-A. y Aseel Salih, M-A. (2014). The effect of (AgNO3) NPs on increasing of secondary metabolites of Calendula officinalis L. in vitro . International Journal of Pharmacy & Therapeutics, 5(4); 267-272.
Helaly, M. N., El-Metwally, M. A., El-Hoseiny, H., Omar, S.A., El-Sheery. N. I. (2014). Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Australian Journal of Crop Science, 8(4); 612-624.
Hernández-León, MC., Gómez-Kosky, R,, Toledo-Rodríguez, E.A., Bernal-Villegas, A., Alejo-Sierra, M., Álvarez-Ferreiro, J., Aguiar-Fernández, A.T., Bermúdez-Calimano, M., Valdés-Martinez, A., González-Alfaro, Y. (2022). Efecto de las nanopartículas de plata (NPs-Ag) en el enraizamiento in vitro de la caña de azúcar (Saccharum spp.). Icidca sobre los derivados de la caña de azúcar, 56(3); 24-31.
Holghoomi, R. y Colagar, A.H.(2024). Applications of Biocompatible Nanoparticles in Plant Biotechnology for Enhanced Secondary Metabolite Biosynthesis. DOI: http://dx.doi.org/10.22541/au.171026632.22580341/v1
Horie, M., Kato, H., Fujita, K., Endoh, S., Iwahashi, H. (2012). In vitro evaluation of cellular response induced by manufactured nanoparticles. Chem Res Toxicol. 25; 605-619. DOI: https://doi.org/10.1021/tx200470e.
Kim, D. H., Gopal, J., Sivanesan, I. (2017). Nanomaterials In Plant Tissue Culture: The Disclosed And Undisclosed. RSC Advances,7(58); 36492-36505. DOI: http://dx.doi.org/10.1039/C7ra07025j
Kim, S. W., Jung, J. H., Lamsal, K., Kim, Y. Seok, M., Ji, S., Lee Y., Youn, S. (2012). Antifungal Effects Of Silver Nanoparticles (Agnps) Against Various Plant Pathogenic Fungi. Mycobiology, 40(1); 53-58. DOI: http://dx.doi.org/10.5941/MYCO.2012.40.1.053
Kittler, S., Greulich, C., Diendorf, J., Köller, M., Epple, M. (2010). Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem. Mater., 22; 4548-4554. DOI: https://doi.org/10.1021/cm100023p.
Kokina, I. y Plaksenkova, I.(2022). Nanoparticles in Plant Biotechnology: Achievements and future challenges. Proceedings of the Latvian Academy of Sciences. Section B, 76 (2); 204–210.
Kokina, I., Gerbreders, V., Sledevskis, E., Bulanovs, A. (2013). Penetration of nanoparticles in flax (Linum usitatissimum L.) calli and regenerants. J. Biotechnol., 165 (2); 127–132.
Kokina, I., Jahundovièa, I., Mickevièa, I., Jermaïonoka, M., Strautiòð, J., Popovs, S., Ogurcovs, A., Sledevskis, E., Polyakov, B., Gerbreders, V. (2017). Target transportation of auxin on mesoporous Au/SiO2 nanoparticles as a method for somaclonal variation increasing in flax (L. usitatissimum L.). J. Nanomater., 7143269.
Kumar, V., Guleria, P., Kumar, V., Yadav, S.K. (2013). Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Science of The Total Environment., 461–462; 462-468.
Liu, H., Ma, Ch., Che, G., White, J.C., Wang, Z., Xing, B., Dhankhe, O.P. (2017). Titanium Dioxide nanoparticles alleviate tetracycline toxicity to Arabidopsis thaliana (L.) ACS Sustainable Chemistry & Engineering, 5(4); 25-32.
Liu, S., Yuzvinsky, T.D., Schmidt, H. (2013). Effect of fabrication-dependent shape and composition of solid-state nanopores on single nanoparticles detection. ACS Nano, 7; 5621-5627. doi: 10.1021/nn4020642.
Luoma, S.N. (2008). Silver nanotechnologies and the environment: old problems or new challenges. The Pew Charitable Trusts and the Woodrow Wilson International Center for Scholars. One Woodrow Wilson Plaza 1300 Pennsylvania Ave. N.W. Washington.
Mahna, N., Vahed, S. Z., Khani, Y.S. (2013). Plant in vitro culture goes Nano: Nanosilver-mediated decontamination of ex vitro explants. Journal Of Nanomedicine And Nanotechnology, 4(2); 3-9. DOI: http://dx.doi.org/10.4172/2157-7439.1000161
Moharrami, F., Hosseini, B., Sharafi, A., Farjaminezhad, M. (2017). Enhanced production of hyoscyamine and scopolamine from genetically transformed root culture of Hyoscyamus reticulatus L. elicited by iron oxide nanoparticles. In Vitro Cell. Dev. Biol.: Plant, 53; 104–111.
Murashige, T. y Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum 15; 473-497.
Naqvi, S., Maitra, A.N., Abdin, M.Z., Akmaland, Md., Samim, Md.(2012). Calcium phosphate nanoparticle mediated genetic transformation in plants. Journal Materials. Chem., 20; 1–9.
Oberdorster, G., Oberdorster, E., Oberdorster, J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect., 113; 823- 839.
Pal, S., Tak, Y.K., Song, J.M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol., 73; 1712-1720.
Pastelín-Solano, M.C., Ramírez-Mosqueda, M.A., Bogdanchikova, N., Castro-González, C.G., Bello-Bello, J.J. (2020). Las nanopartículas de plata afectan la micropropagación de vainilla (Vanilla planifolia Jacks. ex Andrews) Agrociencia 54; 1-13.
Pasupathy, K., Lin, S., Hu, Q., Luo, H., Ke, P. C. (2008).Direct plant gene delivery with a poly (amidoamine) dendrimer. Biotechnology Journal: Healthcare Nutrition Technology, 3(8); 1078-1082.
Poborilova, Z., Radka, O., Babula, P. (2013). Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environmental and Experimental Botany 91; 1–11.
Rai, M., Kon, K., Ingle, A., Duran, N., Galdiero, S., Galdiero, M.(2014). Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl. Microbiol. Biotechnol.,98; 951–1961.
Rostami, A.A. y Shahsavar, A. (2009). Nano-Silver particles eliminate the in vitro contaminations of olive 'Mission' explants. Asian Journal of Plant Sciences, 51 (1); 1-5.
Sarmast, M.K. y Salehi, H. (2016). Silver nanoparticles: aninfluential element in plantnanobiotechnology. Molecular Biotechnology, 58; 441-449.
Sarmast, M.K., Salehi, H., Khosh-Khui, M. (2011). Nano silver treatment is effective in reducing bacterial contaminations of Araucaria excelsa R. Br. var. 'Glauca' explants. Acta Biologica Hungarica, 62(4); 477–484.
Savage, N., Thomas, T.A., Duncan, J.S. (2007). Nanotechnology applications and implications research supported by the US Environmental Protection Agency STAR grants program. J Environ Monit., 9; 1046-1054.
Shakeran, Z., Keyhanfar, M., Asghari, G., Ghanadian, M. (2015). Improvement of atropine production by different biotic and abiotic elicitors in hairy root cultures of Datura metel. Turkish J Biol., 39(1); 111–118. DOI: https://doi.org/10.3906/biy-1405-25
Siddiqui, M.H., Al-Whaibi, M.H., Mohammad, Y.F. (2015). Nanotechnology And Plant Sciences: Nanoparticles And Their Impact On Plants. Nanotechnology And Plant Sciences. DOI: http://dx.doi.org/ 10.1007/978-3-319-14502-0
Soumya, D., Delvadiya, I.R., Murakonda Sai Dinesh1 and Ginoya A.V. (2023). Nanotechnology Enabled Advancements in Plant Breeding. Biological Forum – An International Journal 15(5); 585-592.
Spinoso-Castillo, J.L., Chavez-Santoscoy, R.A., Bogdanchikova, N., Pérez-Sato, J.A., Morales-Ramos, V., Bello-Bello, J.J. (2017). Antimicrobial and hormetic effects of silver nanoparticles on in vitro regeneration of vanilla (Vanilla planifolia Jacks. Ex Andrews) using a Temporary Immersion System. Plant Cell, Tissue And Organ Culture, 129(2); 195-207. DOI: http://dx.doi.org/10.1007/S11240-017-1169-8
Syu, Y., Hung, J. H., Chen, J. C., Chuang, Y. H. (2014). Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression Physiol. Plant Biochem., 83; 57–64.
Talankova-Sereda, T.E., Liapina, K.V., Shkopinskij, E. A., Ustinov, A.I., Kovalyova, A.V., Dulnev P.G., Kucenko, N.I. (2016). The Influence of Cu and Co Nanoparticles on Growth Characteristics and Biochemical Structure of Mentha longifolia in vitro. Nanoscience and Nanoengineering, 4(2); 31-39.
Thorpe, T. (2014). History of Plant Tissue Culture. Methods in Molecular Biology, En: Loyola-Vargas VM, Vázquez-Flota F (Eds) Plant Cell Culture Protocols, Second Edition, Totowa, 411 pp.
Timoteo, C. DeO., Paiva, R., Dos, R., Valquíria, M., Claro, P., Cunha I., Da Silva, D. P., Corrêa, M. JM., De Oliveira, J.E. (2019). Silver Nanoparticles in the micropropagation of Campomanesia rufa (O. Berg) Nied. Plant Cell, Tissue And Organ Culture, 137(2); 359-368. DOI: http://dx.doi.org/ 10.1007/S11240-019-01576-9
Torney, F., Trewyn, B.G., Lin, VS-Y., Wang, K.(2007). Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol.,2(5); 295-299.
Vasyukova, I., Gusev, A,, Zakharova, O., Baranchikov, P., Yevtushenko, N.(2021). Silver nanoparticles for enhancing the efficiency of micropropagation of gray poplar (Populus × canescens Aiton. Sm.) IOP Conference Series: Earth and Environmental Science 875; 012053 DOI: https://doi.org/10.1088/1755-1315/875/1/012053
Vijayakumar, S., Othalathara,U.A.,Bashir, K.M., Bragavatulal, P.L. (2013) Nanogold-Loaded Sharp-Edged Carbon Bullets as Plant-Gene Carriers. Advanced Functional Materials. Advanced Functional Materials, 20 (15); 38-45.
Wang, P., Lombi, E., Zhao E., Fang J., Kopittke Y., Peter, M. (2016). Nanotechnology: A New Opportunity In Plant Sciences. Trends In Plant Science, 21(8); 699-712. DOI: http://dx.doi.org/ 10.1016/J.Tplants.2016.04.005
Yoosaf, K., Ipe, B., Suresh, CH., Thomas, K.G. (2007). In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. J Phys Chem C., 111; 12839-12847.
Zhang, B., Zheng, L.P., Yi L.W., Wang W.J. (2013) Stimulation of Artemisinin Production in Artemisia annua Hairy Roots by Ag-SiO2 Core-shell Nanoparticles. Curr. Nanoscience, 9(3); 363–370. DOI:https://doi.org/10.2174/1573413711309030012
Zuverza-Mena, N., Armendariz, R., Peralta-Videa, J. R., Gardea-Torresdey, Y.JL. (2016). Effects of silver nanoparticles on Radish sprouts: Root growth reduction and modifications in the nutritional value. Frontiers In Plant Science, 7(90); 1-11. DOI:http://dx.doi.org/ 10.3389/Fpls.2016.00090