HISTOLOGÍA DE BROTES IN VITRO DE CAÑA DE AZÚCAR (Saccharum spp.) EN BIORREACTORES DE INMERSIÓN TEMPORAL.
Contenido principal del artículo
Resumen
Durante la propagación in vitro de la caña de azúcar (Saccharum spp.), inicialmente la presencia de los fenoles se consideró como un rasgo indeseable, debido a que su oxidación inhibe el desarrollo del explante y le provocaba la muerte. Sin embargo, en los Biorreactores de Inmersión Temporal se determinó que los compuestos fenólicos en el medio de cultivo líquido no afectaron la multiplicación in vitro de los brotes. El presente trabajo se desarrolló con el objetivo analizar la caracterización histológica de hojas a partir de brotes in vitro de caña de azúcar multiplicados en Biorreactores de Inmersión Temporal con presencia y ausencia de compuestos fenólicos en el medio de cultivo.Se tomaron 10 muestras de 1,0 cm de largo de la porción media de las hojas de los brotes in vitro del cultivar C1051-73 a los siete, 14, 21 días de cultivo. Los resultados obtenidos demuestran la asociación entre los cambios estructurales y bioquímicos resultantes de la excreción de compuestos fenólicos al medio de cultivo por los brotes in vitro.
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Citas
Anónimo. (2011). Nombre de colores hexadecimales. Disponible en: http://www.disfrutalasmatematicas.com/numeros/hexadecimales-colores-nombres.html. (Consultado 26 de diciembre de 2023).
Aragón, C.E. (2015. Physiological characteristics as analyzed by hormone profile, metabolic pathways and expression of specific induced genes of C3, C4 and CAM tropical crops propagated by Temporary Immersion Bioreactors (TIB). Tesis presentada en opción al grado científico de Doctor en Ciencias Agronómica. Instituto de Agronomía, Universidad Técnica de Lisboa. 142 pp.
Aragón, C.E., Carvalho L.C., González, J., Escalona, M., Amâncio, S. (2009). Sugarcane (Saccharum sp. hibridum) Propagated inhead space renovating systems shows autotrophic characteristics and develops improved anti-oxidative response. Tropical Plant Biology. 2,38-50.
Bernal, A. La O, M. Acevedo, R., Castillo, R., Gómez, R., Noguera, A., Grellet C.F., Castagnaro, A.P., Daniels, D. (2024). Production of phenolic compounds from in vitro shoots of sugarcane (Saccharum spp.) in temporary immersion bioreactors. Horticult Int J. 8(1),1‒6. DOI: 10.15406/hij.2024.08.00294.
Bernal, A. (2019). Compuestos fenólicos de caña de azúcar (Saccharums pp.) obtenidos en Biorreactores de Inmersión Temporal con actividad protectora contra patógenos. Tesis presentada en opción al grado científico de Doctor en Ciencias Agrícola. Universidad Agraria de la Habana "Fructuoso Rodríguez". 95p.
Bertani, R.P., Perera, M.F., Arias, M.E., Luque, A.C., Funes, C., González, V., Cuenya, M.I., Ploper, L.D., Welin, B., Castagnaro, A.P. (2014). A study of the sugarcane yellow leaf disease in Argentina. Plant Disease. 98,8,1036-1042.
Bhuiyan, S.A., Magarey, R., McNeil, M., Aitken, K. (2021). Sugarcane smut, caused by Sporisorium scitamineum, a major disease of sugarcane a contemporary review. Phytopathology 111. 11. 1905–1917.
Cartaya, O., Reynaldo, I. (2001). Flavonoides: Características químicas y aplicaciones. Cultivos Tropicales. 22.2, 5-14.
D'Ambrogio de Argüeso A (1986) Manual de técnicas en histología vegetal. Ed. Hemisferio Sur SA, Buenos Aires-Argentina. pp 88.
Davey, M.W., Montagu, M. V., Inzé, D., Sanmartin, M., Kanellis, Smirnoff, N., Fletcher, J. (2000). Plant L‐ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. Journal of the Science of Food and Agriculture. 80,7, 825-860.
Dixon, R.A., Achnine, L. Kota, P., Liu,C.J., Reddy, M.S., Wang, L. (2002). The phenylpropanoid pathway and plant defences a genomics perspective. Molecular Plant Pathology. 3,5, 371-390.
Food and Agriculture Organization of the United Nations (FAO) (2022) FAOSTAT, Crops: Sugarcane; 2022. Database: FAOSTAT. Recuperado de: http://www.fao.org/faostat/en/#data/QC.
He, W.Z. (2006). The applications of sugarcane tissue culture research in China: an overview, in: Proceedings of the International Symposium on Technologies to Improve Sugar Productivity, Guilin. China Agriculture Press Beijing. pp. 613-618.
INICA. (2023). Informe para la XXX Reunión de Variedades, Semilla y Sanidad Vegetal. Cierre 2022, 91 pp.
Jiang, X., Liu, Y., Li, W., Zhao, L., Meng, F., Wang, Y.H., Yang, H., Wei, C.H., Wan, X., Gao, L., Xia,T. (2013). Tissue-Specific, Development-Dependent Phenolic Compounds Accumulation Profile and Gene Expression Pattern in Tea Plant (Camellia sinensis). Tissue-Specific, Development-DependentPhenolicCompoundsPLoS ONE. 8,4, 1-14.
Lagunes, E., Zavaleta, E. (2016). Función de la lignina en la interacción planta-nemátodos endoparásitos sedentarios. Revista Mexicana de Fitopatología. 34,1, 43-63.
Li, H.M., Pan, S.M., Li, R.M., Wu, S. (2003) Review on some developments in the effect of phenolic compounds on sugarcane tissue cultures. SugarcaneCanesugar. pp. 418-420.
Lorenzo, J.C., Blanco, M. A., Peláez, O., González, A. Cid, M., Iglesias, A., González, B., Escalona, M., Espinosa, P., Borroto, C. (2001).Sugarcane micropropagation and phenolic excretion. Plant Cell, Tissue and Organ Culture. 65, 1-8.
Martínez, M., Espinosa, S. (2005).Tricomas foliares de Croton Sección Barhamia (Euphorbiaceae). Acta Botánica Mexicana. 72, 39-51.
Metcalfe, C. (1960). Anatomy of monocotyledons. I. Gramineae. Clarendon Press, Oxford, UK. 731 p.
Musilova, L., Ridl, J., Polivkova, M., Macek, T., Uhlik, O. (2016). Effects of secondary plant metabolites on microbial populations: changes in community structure and metabolic activity in contaminated environments. J. Mol. Sci.. 17,8, 1205.
Ozyigit, I.I. (2008). Phenolic changes during in vitro organogenesis of cotton (Gossypium hirsutum L.) shoot tips. African Journal of Biotechnology, 7 (8): 1145-1150.
Pastori, G.M., Kiddle, G., Antoniw, J., Bernard, S., Veljovic-Jovanovic, S, Verrier, P., Foyer, C.H. (2003). Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. The Plant Cell ,5 4, 939-951.
Tissier, A. (2012). Glandular trichomes: what comes after expressed sequence tags? The Plant Journal, 70,51-68.
Wagner, G.J., Wang, E., Shepherd, R.W. (2004). New approaches for studying and exploiting an old protuberance the plant trichome, Ann Bot, 93,1,3 -11.
Watt, P. (2012). The status of temporary immersion system (TIS) technology for plant micropropagation. Africa. J. Biotechnol,. 3, 3, 14025-14035.
Wekesa, R., Onguso, J.M., Nyende, B.A., Wamochol, S. (2015). Sugarcane in Vitro Culture Technology: Applications for Kenya’s Sugar Industry. Journal of Biology, Agriculture and Healthcare,5,17,127-133.
Weng, J.K. y Chapple, C. (2010). The origin and evolution of lignin biosynthesis. New Phytologist, 187,2, 273-285.
Zhang,J., Zhang, X., Tang, H., Zhang, Q., Hua, X., Ma, X., Zhu, F., Jones, T., Zhu, X., Bowers L. (2018). Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nature Genetic, 50, 1565-1573.